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reactions for both the 4E and 4B2 intermediates (the latter 
required by the wavelength dependence) would, in principle, 
justify any amount of the cis-fuc and cis-mer isomers, and even 
the possible presence of trans-mer product. 

The associative model assumes formation of a seven-coor- 
dinate intermediate, by solvent approach trans to the labilized 
ligand,2-4 and the expectations are substantially those of a 
concerted, edge-displacement mechanism. On a statistical 
basis, axial labilization (4E) should produce a 1:l ratio of 
cis-mer ( H 2 0  entry on the NH3-NH3 edges) and cis-fuc 
isomers (attack on the NH3-CN edges). For release of 
equatorial NH, (4B2), statistical trans coordination would 
result in a 1:2:1 distribution of cis-mer, cis-fuc, and trans-mer 
species, respectively. 

This mechanism also accounts for the stereochemical 
findings in terms of predominant 4E photoreactivity. The 
percentage of cis-fuc product, higher than statistical, may be 
attributed to preferential migration of the negatively charged 
cyanide ligands away from the incoming solvent molecule. The 
lack of trans-mer product (related to 4B2) may be also ex- 
plained by electrostatic repulsion, hindering access of water 
between the CN- groups. A possible incongruence of this 
description is that at higher excitation energies (assumed to 
enhance the involvement of 4B2, as suggested by the wavelength 
dependence) the proportion of cis-fuc isomer should increase, 
in contrast with observation. 

To sum up, the stereochemistry of the photoproducts and, 
roughly, their distribution are consistent with both mechanisms, 
if chemical deactivation is thought to take place mainly in the 
lowest excited quartet. Neither model satisfactorily accounts 
for the wavelength dependence and for the missing trans-mer 
product. A more detailed analysis is virtually impossible since 
(i) there are too many unknown parameters and (ii) the 

adopted D4h symmetry may well be an oversimplification. 
A survey of the available data on the photostereochemistry 

of NH3 aquation in other chromium(II1) tetraammines shows 
that a definitive choice between the two models cannot be 
made yet. The behavior of c i ~ - c r ( N H , ) ~ F ~ +  is more com- 
patible with the Vanquickenborne-Ceulemans t h e ~ r y ; ~  that 
of t r u n ~ - C r ( N H ~ ) ~ F ~ +  is consistent with both  mechanism^,^ 
while for ? ~ U W - C ~ ( N H ~ ) ~ ( C N ) ~ +  the results are best ration- 
alized by the edge-displacement appr~ach .~ ,~ '  Several aspects 
of the stereochemistry are therefore still elusive, specially in 
systems of the present complexity. Regardless of the mech- 
anistic details, independent studies of solvent38 and high- 
pressure39 effects indicate that, at least for cationic chromi- 
um(II1) complexes, associative, or concerted, photoreaction 
paths are preferred. 
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Application of the dissociative model to the higher excited quartet of 
"S-C~(NH~)~(CN)~+,  4E,, incorrectly considered reaction through 
both an excited-state and a ground-state bipyramid, leading to cis-mer 
and trans-mer dicyanoaquo products, respective1 Such an intermediate 

product only.34 This difference, however, does not modify the conclu- 
sions drawn in ref 3. 
Cusumano, M.; Langford, C. H. Inorg. Chem. 1978, 17, 2222. 
Angermann, K.; van Eldik, R.; Kelm, H.; Wasgestian, F. Inorg. Chem. 
1981, 20, 955. 

is instead expected to react in its ground state ( r. B2) and to yield cis-mer 
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The pictorial approach to the generation of group orbitals based on the representation of basic symmetry requirements 
with Mollweide projections is further developed. General rules are given for the application of this technique to the major 
classes of structures commonly found for molecules. The utility of the technique for the analysis and discussion of u-, T-,  

and &type interactions of atomic orbitals is illustrated. 

Recently' we have proposed the use of a cartographic device, 
the Mollweide projection, for the construction and presentation 
of symmetry-adapted functions for molecular point-group 
structures within the generator orbital approach to the LCAO 
approximation. In this paper we demonstrate the utility of 
the method for ihe other commonly occurring molecular 
symmetries than 0, and illustrate the simple manner in which 
u-, A-, and &type interactions can be analyzed and discussed 
within the same framework. 

The essential philosophy of the generator orbital approach2g3 
is the reproduction, with the use of local functions (the atomic 
orbitals) sited at atomic positions about a chosen origin de- 
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termined by the molecular point group, of the nodal structures 
of actual or imagined orbitals sited at that chosen origin. The 
role of these generator orbitals is the detailing of the possible 
basis function symmetries as nodal patterns for the point group 
irreducible representations. This is so because the set of atomic 
orbitals of any atom sited at the origin (basis functions, in the 
orbital spherical harmonic components, of the irreducible 
representations of the spherical group R,) provide an over- 
complete set of functions from which can be chosen compo- 

(1)  C. M. Quinn, J. G. McKiernan, and D. B. Redmond, J. Chem. Educ., 
in press. 
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Mollweide Projections 

Table 1. Kubic Harmonics for the Representation of AU the 
Irreducible Representations of Oh and the Origins of These 
Unique Symmetries in the Subspaces ofR,O 
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A,, S (000) 
T,, P (OOI), (loo), (010) 
E, D 2(002) - (200) - (020), (200) - (020) 
Tz, D (llO),(Oll), (101) 
A,, F (111) 
T,, F (201)-(021), (120)-(102),(012)-(210) 
Ttg G (130)-(310), (013)-(031),(301)-(103) 
E, H 2~113~-~3 l1~- (131) ,  (311)-(131) 
AZg I (240) + (024) + (402) - (420) - (042) - (204) 
A,, L (351)+(135)+(513)-(531)-(153)-(315) 

The notation (ijk) is due to Elert" and translates asxi9zk 

Table 11. Mappings, as pirect Sums, of the Irreducible Sub aces 
of the Spherical Group R ,  on the Irreducible Subspaces of gha 
S Aig H E, t ZT,, + T,, 
p T," I A,, t A2, +E,  t T,, + ZT,, 
D T*,+Eg J A, ,+EU+2T, , t2T, ,  
F A*, + T,, + T,, K A,g + ZE, + ZT,, + ZT,, 
G L As, + E, + T,, + T,% A,, +A, ,  + E, + 3T,, + ZT,, 

a InR, the subspaces are listed with use of the symbolism 
appropriate to atomic orbitals: Muliiken synmbols are used to dip 
tinguish the irreducible representations of Oh. The list is termin- 
ated when a l l  the irreducible representations of Oh have been in- 
volved in the direct sums 

nents appropriate to the irreducible representations of point 
groups of less than spherical symmetry. In our Mollweide 
projection technique these basic central pattems are presented 
as two-dimensional maps and the required LCAO functions 
are obtained for particular point-group molecular symmetries 
from these universal charts. 

The common molecular symmetries divide into two types. 
There are the molecular symmetries basedon cubicgeometry, 
the two most important examples being Oh and Td, and the 
second type encompassing the dihedral groups and subgroups 
such as C,." For the cubic point groups the kubic har- 
m o n i c ~ ~ ~  are the appropriate linear combinations of the general 
spherical harmonics to present as Mollweide projections, since 
they exhibit the required transformation propertjes of the basis 
set for the degenerate irreducible subspaces of Oh and Td. For 
the other class of molecular symmetries the general functions 
should be used. 

Basis Functions for the Cubic Groups Oh and pd 
and fd of the MX, and MX, structures 

all the u- and r-type molecular orbital symmetries that can 
be constructed from the s and p atomic orbitals at each ligand 
position can be obtained from the Mollweide projections of 
the s, p. and d spherical harmonics and the f and g specifically 
kubic harmonics. The representation of all the irreducible 
symmetries of Oh in this manner, however, requires the use 
of various spherical harmonics up to the L level. The func- 
tional forms for these functions are presented in Table I with 
use of Elert's notationS together with their conventional 
MuJliken labels and the origins of these unique symmetries 
in R,. Note that the subspaces of Rimap homomorphically 
onto the lower order subgroups of Oh as given in Table 11. 
And so repetitions of symmetries occur with increasing order 
of the spherical harmonics. Thus, our attention is confined 

For the groups 

(4) (a) This division and the use of the appmpriste spherical or kubic 
hsmdc set is preferable, since it yields a mktent  d i n a t e  s y s t p ,  
even through many of the -nd typc of group are subgroup of 0, if 
the essential requirements in 4 of interchangeability of X. y .  and z IS 
maintained by suitable orientation of the group geometry in the cube, 
e.& the siting of C, gcametry about the ( I  11) axis. (b) H. Bethe, Ann. 
Phys. ( L e i p i p ) ,  3, 133 (1929). 

( 5 )  W. Elm, Z. Phys., 51, 8 (1928). 

't 

Figure 1. Basic geometry of the Mollweide p!ojection and basis 
functions for the irreducible representations of Oh in this form with 
the kubic harmonics. 

Figme 2. (a) Conventional, cube-based, representation of tetrahedral 
geometry and the pw ligand orbital set. (b) Tetrahedral geometry 
as a Mollweide projection. (c) p" ligand set in projection form (the 
p r  orbitals divide as along lines of longitude and r,+ along lines 
of latitude). 

to the unique representations of Table I, and these are pres- 
ented as Mollweide projections in Figure 1 with areas of 
positive-function amplitude identified by shading. 

For Oh symmetry MX, structures the generation of u- and 
r-type group orbitals has been conside$ in detail e1sewhere.l 
In Figure 2 the atomic positions for Thsymmetry molecules 
and a set of general p r  ligand orbitals are presented in the 
conventional manner (Figure 2a) at the appropriate corners 
of a cube and also as Mollweide projections for the presentation 
of the basic geometry (Figure 2h) and the plr orbital locations 
and orientations (Figure 2c). The construction of a-type group 
orbitals from local s or pa oriented ligand atomic orbitals 
follows directly from the superimposition of, for example, 
Figure 2b (assume that the black dots defining the atomic 
positions also identify s orbitals or pa lobes of given sign) on 
the set of Mollweide projections of Figure 1. For the p r  set 
of ligand orbitals in Figure 2c this simple superimposition 
procedure is not sufficient to give directly the coefficients of 
the group otbital components because for cubic symmetries 
lower than Oh the locally mutually orthogonal ligand p r  or- 
bitals are not simply disposed in general to be tangential or 
perpendicular to nodal or constant contour lines of the 
Mollweide projections. 



2312 Inorganic Chemistry, Val. 22, No. 16. 1983 Quinn, McKiernan, and Redmond 

Figure 3. Results of the superimposition of Figure 2c on the p subset 
of the basic set of projections of Figure I .  Only in the first diagram 
is there a simple result involving single local functions (r,? at each 
atomic position. 

The Mollweide 
projections for the T2 set of Td symmetry are presented with 
contour lines defining equal amplitudes of the central p 
functions on the unit sphere. For the first projection the pu  
orbitals in the horizontal direction can be excluded since they 
exhibit a net zero overlap with the projection, and the simple 
superimposition process leads to the correct group orbital 
combination transforming as a central p. function. For the 
remaining group orbitals this does not work none of the local 
p r  orbitals are excluded by the superimposition of Figure 2c 
on the p set of Mollweide projections, and the coefficients of 
the individual components are left undetermined. The remedy 
required is implicit in the first diagram of Figure 3 for which 
the superimposition procedure does work In that case the local 
functions do either lie tangentially along a contour line of the 
central function amplitude or lie normal to such a line, and 
so the tangentially oriented components can be excluded. For 
the remaining group orbitals of the T2 set, and generally for 
p* interactions, the correct components on the ligands are the 
resultants obtained by taking the linear combinations of the 
local p r  sets which yield the same functional forms lying along 
the normals to contours passing through the ligand positions. 

The property of the central function that is being matched 
in this process is the gradient, locally on each Mollweide 
projection the lines of greatest slope at the ligand positions. 
The most convenient mathematical method for determining 
these directions at each ligand position and thereby the ap- 
propriate coefficients for the group orbital components (up 
along lines of longitude with positive lobe pointing south, and 
r,* along lines of latitude with positive lobe pointing east 
through each ligand position "in) has been given recently by 
Stone!.'" in the course of the development of a novel cluster 
theory. The taking of the gradient of the central functions 
is equivalent to the defining of the surface harmonics on the 
unit sphere; in each case the surface function obtained as the 
partial derivative with respect to 0 yields at each ligand position 

This difficulty is manifest in Figure 3. 

(6) A. I. Stone, Mol. Phys., 41. 1339 (1980). 
(1) (a) A. I. Stone. Imrg. Chem., 20,563 (1981). (b) This procedure is 

formally the Same as that used in the angular-overlap method of C. K. 
Isrnengon and C. E. Sehaffefer (for examole. Mol. Phvr.. 9.401 (1965) 

Figure 4. Basic functions for the r group orbitals in tetrahedral 
symmetry transforming as the Tz, E, and TI irreducible representations 
as Mollweide projections with resultant components at each site in 
the direction of greatest slope and as linear combinations of r: and 
r? along great-circle axes of antisymmetry of the central function. 

the appropriate coefficients for the rp components, while the 
surface function obtained as the partial derivative of the central 
function with respect to the azimuthal angle yields the coef- 
ficients for the ui* components.'b 

Pictorially for the two classes of point group with which we 
are concerned in this paper, these gradient directions and the 
orientations of the appropriate resultant p r  functions at each 
ligand position can be determined directly from the Mollweide 
projections. In all cases ligand positions can be chosen to lie 
on great circles of the unit sphere which are either axes of 
symmetry or axes of antisymmetry of the central functions 
generating the appropriate group orbital symmetries. The local 
p* resultant components at such ligand positions are required 
to lie along the directions of axes of symmetry and a t  90' to 
axes of antisymmetry oriented so that positive and negative 
phases of the local functions exhibit maximum overlaps with 
the central function phases! Moreover it follows and it is 
implicit in Stone's analysis also that the local rotation through 
90" in the Same sense at each ligand position of the components 
of a group orbital also yields a group orbital. 

In Figure 4 the Mollweide projections corresponding to the 
r-type group orbitals of the T,-symmetry structure that are 
consistent with these statements are presented. The Coefficients 
of the u,@ and u: individual components are also listed against 
each group orbital projection, and these have been obtained 
from the corresponding surface harmonics given by Stone.'* 
In each diagram two great circles are involved and each passes 
through two ligand positions and two axial points *gX or *$ 

(8) (a) C. M. Quinn, J. G. McKiernan, and D. B. Redmond, J.  Chrm. 
Edue., in press: (b) D. B. Redmond, C. M. Quinn, and J. G. McKirman. 
J. Chcm. Sm., Foradoy Tram. 2. in press, 

and-later publications) and a&unts fo; the appear&& bf theiens& 
harmonic functions in that thcory as explained in ref 8b. 
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Fgw 5. Mollweide projections of the general f spherical harmonics. 

or *Ez. These great circles are distinguished on the diagrams 
of Figure 4 by different broken-line patterns as described in 
the caption. The first three diagrams yield the T2- tw group 
orbitals transforming in the same manner as the central 
functions p., px, and py In these first three cases the great 
circles are axes of symmetry of the central functions. Local 
rotation of the resultant wmponents through 90° in each case 
yields the TI  group orbitals, which transform as the fZ(+,+ 
fi(yLt). and f,(z_&,central functions in which the same great 
circles encompassing the ligand positions are axes of anti- 
symmetry of the central functions. The Mollweide projections 
and functional forms for these group orbitals are given in the 
last three diagrams of Figure 4. The remaining pair of group 
orbitals of E symmetry is obtained from the Mollweide pro- 
jections of the central functions dz* and d&+ and this is an 
example of the unusual case in which the local rotations merely 
interchange the basis functions of the same degenerate irre- 
ducible symmetry. These group orbitals are presented in the 
middle two diagrams of Figure 4. 

The MX8 Oh-symmetry CsCl structure is not found for 
molecular material since other geometries are of lower total 
energies. The hypothetical cluster structure corresponds to 
two interlocked tetrahedral systems, and the irreducihle sym- 
metries for T-type ligand orbital interactions E,, k, TI., TI,, 
T,,, and Th follow directly from the above analysis when the 
appropriate geometry is superimposed on the standard set of 
symmetry Mollweide projections of Figure 1. 

Basis Functions for the Dihedral and Related Groups 
The general set of spherical harmonics in the form of 

Mollweide projections provide a direct hasis for the con- 
struction of symmetry-adapted functions as linear wmbinations 
of local ligand orbitals. The general set of s, p. and d spherical 
harmonics are unaltered for cubic systems, and these projec- 
tions have k e n  given already in Figure 1. The general f and 
g spherical harmonics are presented in Figures 5 and 6. For 
the dihedral groups up to D6h and Da these sets of Mollweide 
projections are sufficient to permit the identification of all the 
group orbitals that can be formed from ligand s and p orbitals, 
Group orbitals of u type are easily generated in all cases. 
There are two minor wmplications. For group orbitals formed 
as linear wmbinations of ligand orbitals sited at inequivalent 
positions on the unit sphere of the central function projections, 
it is necessary to modulate each term by the central function 
amplitudes a t  the ligand positions. Sewndly, as the point- 
group symmetry diminishes, increasing homomorphisms are 
found in the mapping of the irreducible subspaces of the 
spherical group R, onto the irreducible subspaces of the lower 
symmetry groups. This means that repetitions of symmetry 
can occur in the pictorial scheme for the generation of group 
orbitals from the Mollweide projections of the spherical 
harmonic hasis functions of R, before all the different kinds 
of symmetry have been identified. Such repetitions should te 

. .  

Figure 6. Mollweide projections of the general g spherical harmonics. 

excluded while other cases are also possible and present no 
difficulties for the cases of u-type interaction since the repeated 
ligand u combinations are very easy to recognize. 

Group orhitals of T type follow directly from u-type func- 
tions. In the dihedral groups there are no symmetry operations 
that interchange z, the principal rotational axis of such groups, 
with either x or y and the simplest group orbitals of T type 
result when this distinction is maintained in the analysis. The 
gradient-dependent surface harmonic technique is valid of 
course, hut because symmetry repetitions are difficult to ex- 
clude unless the simplest functions are identified, it is more 
convenient to exploit this unique property of z and also 
therefore the function space spanned by the T! components 
on the unit sphere. Thus the group orbitals can be wnstructed 
solely from T! or r i m  components even though such combi- 
nations are of the same symmetries in many cases! The T: 

wmbinations result from the superimpition of the Mollweide 
projection for the T? geometry on the projections that generate 
the distinct a-type group orihtals, and the rim combinations 
are then obtained from these new functions by locally rotating 
each T! through r/2. The irreducible symmetries obtained 
in the first operation can k identified from the transformation 
properties of the product function of z with the central har- 
monics generating the u group orbitals, while those resulting 
from the s a n d  operation are given by the direct products of 
these first irreducible symmetries with the group irreducible 
representation exhibiting traces +1 for proper rotations and 
traces -1 for improper rotations. 

The analysis required for the cases of u and r ligand in- 
teractions in C6" symmetry illustrates these points. In C,, six 
u-type Iml functions (either s or pu a t  each ligand position) 
generate six group orbitals. In Figure 7 these six symmetry. 
adapted functions are presented in projection form. One finds 
an s-like combination (A, symmetry for the s, p.. dza, and 
fz(5+3) projections), pi and p,-like wmbinations (E, symmetry 
for pJpy. dxy/dYz. and fy(sr~-l)lfx(~z~-l) projections), d,- and 
d,+ike combinations (E2 symmetry for the d,/d&9 and 
fxyz/fz(+g) projections, and finally an ixy(6*-2~~y*+6y.)-like 
combination (A2 symmetry). 

For 12 local PT functions in Ca symmetry the six group 
orbitals involving T! components only on the ligands follow 
immediately from the u analysis. These n*-group orbitals are 
given in the first column of diagrams in Figure 8 while the 
**-group orbitals resulting from the first set by rotations 
through u/Z are given in the second wlumn. Note that this 
p r d u r e  generates the wnventional sets of group orbitals that 
are obtained from standard group-thmretical techniques and 
that the modulation of u functions carries through to the T 

(and later the 6) analysis. The results obtained by use of the 
surface harmonic p r d u r e  in such cases as Cb symmetry are 
unnecessarily complicated k a u s e  the canonical sets of T! and 
r im group orbitals of the same symmetries become mixed in 
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E t  , 1  

fxw-;Yl) 

Figwe 1. T-group orbitals in C, symmetry as Mollweide projections. 

figure 8. r-orbitals in Da symmetry as Mollweide projections. This 
set also can bc used for C,., structures, thereby preserving the con- 
ventional separation of 1$ and d components. Note again the 
alignments of the local components with respect to the great circles 
of symmetry or antisymmetry. 

the determination of the local resultant gradient directions at 
the ligand positions, and so it is difficult to recognize and 
distinguish repetitions of symmetries merely due to the m a p  
pings from R3 onto the lower order group in question. Our 

4 :,+ ... . 0 . . . . + '  4 

Flgure 9. Hypothetical 6-type interactions of a T,symmetry ligand 
field. The irreducible symmetries E, T,, and T, are the same as is 
found for *-type interactions. The E set of group orbitals interconvert 
on local 4 5 O  rotations while the T, set first encountered for the d,, 
and dYz central functions yield the T, set of fzc&g), f,w). and f,+g) 
central function symmetry, and the great circles of symmetry of the 
T, type central functions become great circles of antisymmetry. 

procedure is equivalent to the analysis directly on the basic 
set of Mollweide projections of the special C,., geometries that 
are of the higher symmetries Dd since this is inherent in the 
ligand geometry alone. This point is emphasized in Figure 
8 by the presentation of the group orbitals superimposed on 
the equatorial great circles of the appropriate same-symmetry 
central harmonic projections, which procedure maintains the 
rule that individual components lie along axes of symmetry 
and lie normal to axes of antisymmetry. 
6-Orbitals and Metal-Metal Bonds 

The general procedures that we have established for the 
generation of u- and rr-type orbitals also apply for the gen- 
eration of &type group orbitals in which local ligand d atomic 
orbitals are disposyd to be coincident with lines of longitude 
and latitude (6p-m ) or at r J 4  (6,8@) to such lines on the unit 
sphere through ligand positions. The central function property 
that determines the resultant 8-component direction at each 
ligand position for a given syymmetry is its concavity, which 
is determined by second derivatives with respect to 0 and 4. 
Stone' has given tensor harmonics of this fashion which yield 
the directions of greatest concavity as linear combinations of 
the basic 6,8"' and functions a t  each ligand position. 
Implicit in these results too is our rule concerning the orien- 
tation of the resultant functions when the ligand positions lie 
on great circles which are axes of symmetry or antisy"etry.8 
For &type interactions resultant d functions lie in the directions 
of greatest concavity when aligned along lines of symmetry 
through ligand positions or a t  uJ4 to lines of antisymmetry 
through ligand positions. Each kind of resultant combination 
generated in this fashion yields complementary functions on 
local rotation of the individual components through 7r/4. 

These statements are illustrated for the hypothetical case 
of &type interactions for a Thsymmetry ligand field in Figure 
9. Since the tensor harmonics depend on the second deriv- 
atives of the central generating functions, the 6 analysis is 
started from the d central functions. Note the interconversion 
as in the prr case of the two e-type symmetry functions and 
the exclusion of the fxyz (A,) symmetry since the ligand pos- 
itions correspond to maxima of the central function amplitudes, 
so that there is a net zero contribution of the 6 component at 
each ligand site. 
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Table 111. Components of the Various Molecular Orbitals for the 
[Re,Cl,]'- Ion Matched according to the Generating Central 
Harmonic Function- 

type of 
generator Re, Cl, interaction 

6p,/6pY o(Re4l) 
Pl lPY 5dxZ/5d 3p0 "(Re-Re) 
PZ 6s/5dZz$po 3p0 o"(Re-Re) 

o(Re4I) 
dxi7l Sd,*yr 3po o(Re€l) 

B(Re-Re) 

6pXjbpy o ( R e 4 )  dxz/dyz 
f ( X + P ) *  5d,iy? 3po o(Re-Cl) 

s*(Re-Re) 
fxy. SdZY (3pn) s*(Re-Re) 

S 6s/5dZr/6p 3po 0 1 Tu 

I I 

~ 

dSY 5% (3pn) 6(Re-Re) 1 
5dzJSdys 

3p0 n*(Re-Re) - i  '1 ~ l r  
7 CY 

a I t  is assumed that the chlorine po orbitals are substantially 1 i 
more important than the chlorine pn in the determination of the 
Structure stabilitv. 

Flw 11. 6-type interactions of an M6 cage in such complex ions 
as [Mo,CI,]'+ and [Nb6C1,2]z+. Note that for d6 orbitals the net 
overlap at local atomic positions with the phases of the central function 
on a projection is often different from that found for p* orbitals. 'thus 
in the second diagram of this figure the equatorial d6 set do contribute 
to the e, group orbital. For the conventional orientations of the d6 
orbitals, the 12 group orbitals given are identical with those given 
in ref 17. 

In Figure 11 the &type group orbitals for an M, octahedral 

evident from an insoection of the oroiections. It is straieht- 

k; 5,. 

sr 8" 
Figure 10. 6-type d-orbital interactions in the [Re2C18]z- ion. The 

ecliped D.. geometry of the ion. 
quadruple bond between the rhenium d, interactions stabilizes the me ta lk  Cluster are Classified. T W O  features are particularly 

... . 

Two important classes of molecular material in which 
metal-metal bonds with &type d-orbital interactions are to 
be expected are the binuclear metallic species exemplified by 
the octachlorodirhenate(2-) ion, [Re2C18]z-,"10 and the tran- 
sition-metal atom clusters that are components of, for example, 
the complex ion [Mo6C18]'+" or primitive models for the 
surface regions of bulk  metal^.'^-'^ The classification and 
discussion of the molecule or cluster wave functions for such 
systems is facilitated by our projection technique. 

The eclipsed (D4,,) structure of the [ReZCI8Iz- ion is at- 
tributed to the stability of the R t R e  6 bond, consistent with 
the short metal bond observed. For eight pu orbitals on the 
chlorine atoms, bonding interactions are possible with the 
rhenium valence s, p, and d orbitals of suitable energies and 
symmetries which also are required to provide the metal-metal 
bonding. The symmetry requirements follow directly from a 
Mollweide projection analysis for the ion structure compo- 
nenets of two rhenium atoms surround by eight chlorine atoms 
arranged in Dlh symmetry. The classification of the group 
orbital componenets is given in Table 111, and the important 
&type interactions are shown in Figure 10. The eclipsed 
structure of the ion is stabilized by both the &type rhenium 
Sd, interactions between the chlorine atom positions with 
presumably some chlorine p r  contributions and the mixing 
of rhenium Sd+, with the chlorine pu orbitals. 

forward to count the number of .&ding and antibonzng 
interactions in any of the molecular orbitals if such criteria 
are to be used to assess the orbital energies and so determine 
the cluster electronic configuration. It is clear that bonding 
interactions to an M6 cage from surrounding ligands should 
lead to facial attachments (8 ligands) when the d, orbitals 
of the cage are involved and to edge attachment (12 ligands) 
when the cage to ligand bonding is dominated by the d3.9 
orbitals of the cage. Just such a distinction is found, for 
example, in the clusters [Mo6CI8l4+ I i  and [Nb6C11z]z+,16 for 
which the cage electron configurations are (al,")2(tlu*)6- 
(t2836(e~)z(tz.6)6 and (a,,6)z(t,,~)6(t~~~)6(a~6~z, respec$vely." 

Note that in both these cases involving D4* and Oh sym- 
metries the rotation rule for the generation of new &orbital 
symmetries can be used. Thus in Figure 10 the d+? functions 
on the rhenium atoms generate the d -based functions in the 
lower diagrams by rotation locally 8rough 4Y. In Figure 
11 the &type cluster orbitals obtained in sequence from the 
basic Mollweide projection sets also exhibit the same rotational 
relationships. Note also the manner in which the relationships 
between the central, surface, and tensor harmonics determine 
the level at which group orbitals match the symmetries of the 
central harmonic functions. For u interactions the values of 
the central function at the ligand positions determine the 
coefficients of u components; thus the s central harmonic is 
relevant to these cases. For x components the gradient rela- 
tionship excludes the s central harmonic, while for 6 interae 
tions the second-derivative relationship means that only p r e  
jections of I 2 2 level central harmonics can contribute. 
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